Differential Equations on Hyperplane Complements

نویسنده

  • YAPING YANG
چکیده

The goal of the next two talks is to (1) discuss a class of integrable connections associated to root systems (2) describe their monodromy in terms of quantum groups These connections come in two forms: • Rational form leading to representations of braid groups (this week) • Trigonometric form leading to representations of affine braid groups (next week) The relevance of these connections is that A: the quantum differential equations for Nakajima quiver varieties are of trigonometric type B: the description of their monodromy in terms of quantum groups constitutes a step towards proving Roman Bezrukanikov’s conjectures that the monodromy lifts to/comes from a braid group action on the derived category.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Equations on Hyperplane Complements Ii

1.2. Let E be a Euclidean vector space, Φ ⊂ E∗ a root system. Denote Q ⊂ h∗ the root lattice, and P ⊂ h∗ the weight lattice. Let Q∨ ⊂ E be the lattice generated by the coroots α∨, α ∈ Φ, the coroot lattice is dual to the weight lattice P ⊂ h∗, and P∨ ⊂ E the dual weight lattice, which is dual to the root lattice Q. Let H = HomZ(P,C) = Q∨ ⊗Z C∗ be the complex algebraic torus with Lie algebra h =...

متن کامل

Morse Theory, Milnor Fibers and Minimality of Hyperplane Arrangements

Through the study of Morse theory on the associated Milnor fiber, we show that complex hyperplane arrangement complements are minimal. That is, the complement of any complex hyperplane arrangement has the homotopy type of a CW-complex in which the number of p-cells equals the p-th betti number. Combining this result with recent work of Papadima and Suciu, one obtains a characterization of when ...

متن کامل

On the simple connectedness of hyperplane complements in dual polar spaces, II

Suppose ∆ is a dual polar space of rank n and H is a hyperplane of ∆. Cardinali, De Bruyn and Pasini have already shown that if n ≥ 4 and the line size is greater than or equal to four then the hyperplane complement ∆ −H is simply connected. This paper is a follow-up, where we investigate the remaining cases. We prove that the hyperplane complements are simply connected in all cases except thre...

متن کامل

Morse theory, Milnor fibers and hyperplane arrangements

Through the study of Morse theory on the associated Milnor fiber, we show that complex hyperplane arrangement complements are minimal. That is, the complement of any complex hyperplane arrangement has the homotopy type of a CW complex in which the number of p-cells equals the p-th betti number.

متن کامل

Simple connectedness of hyperplane complements in dual polar spaces

Suppose ∆ is a dual polar space of rank n and H is a hyperplane of ∆. Cardinali, De Bruyn and Pasini have already shown that if n ≥ 4 and the line size is greater than or equal to four then the hyperplane complement ∆ − H is simply connected. Shpectorov proved a similar result for n ≥ 3 and line size five and above. We will prove a similar result for n ≥ 5 and line size three and above. We also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013